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ABSTRACT 
OLIGOMERIZATION OF THE STERILE-2 G-PROTEIN COUPLED RECEPTOR IN YEAST CELLS IN THE 

PRESENCE AND ABSENCE OF α-FACTOR PHEROMONE USING FLUORESCENCE SPECTROSCOPY 

AND FÖRSTER RESONANCE ENERGY TRANSFER ANALYSIS 

 

by 

 

Joel David Paprocki 

 

The University of Wisconsin-Milwaukee, 2014 

Under the Supervision of Professor Valerică Raicu 

 

 

G-protein-coupled receptors (GPCRs) are the largest family of receptors that respond to a wide 

variety of extracellular stimuli, including molecular ligands such as odorants, neurotransmitters, 

and hormones, as well as physical agents sigh as light and pressure.  The stimulation event 

results in initiating conformational changes in the structure of the receptor, which further 

results in the release of the heterotrimeric G-protein; the latter has a variety of functions within 

signaling pathways in cellular biology.  The GPCR explored in this investigation is the Sterile 2 α-

factor receptor (Ste2), whose natural function is that of a yeast mating pheromone receptor.  Its 

natural ligand is the α-factor mating pheromone, and was used to study the interaction of 

dynamic hetero-oligomers of Ste2 receptors in the presence and absence of the ligand.  Förster 

Resonance Energy Transfer (FRET), a non-radiative process of energy transfer between 

fluorescent molecules, was used to probe interactions between protomers within homo-

oligomers of Ste2 in living Saccharomyces cerevisiae (yeast) cells and hence the general 

association stoichiometry and quaternary structure.  Through the use of spectrally-resolved two-

photon microscopy with pixel-level resolution, the interaction between differently fluorescent 

tagged proteins was explored by determining their apparent FRET efficiency at each pixel.  It 



www.manaraa.com

iii 

 

was found that Ste2 forms both dimers and tetramers, and with the introduction of its natural 

ligand, the equilibrium might be shifted from dimers to tetramers. 
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Chapter 1 

INTRODUCTION 

1.1. History and Background 

Cellular signaling has long been a topic in a variety of fields of research, as it tells us how the 

basic mechanisms of action within a cell contribute to the whole of the biological kingdom.  I 

wasn’t until the last half of the twentieth century that we developed sensitive enough 

instruments to investigate cellular structure and functions of the internal mechanisms.  Cells of 

all species, whether they be eukaryotic (cells with membrane-bound nucleus) or prokaryotic 

(cells with non-membrane bound nucleus), have been observed responding to external stimuli 

since their discovery, but the methods of interaction were also long unknown.  The concept of 

stimuli response, was discovered by an American scientist by the name of Earl W. Sutherland, 

whose work in the 1950’s discovered the mechanisms of action of hormones.  He later went on 

to win the Nobel Prize in Physiology in 1971 for his work with cyclic adenine monophosphate 

(cAMP), where he proved its intermediary role in many hormonal functions.  From this work, he 

coined the term “second messenger,” which referred to the intermediary role the cAMP played 

in hormonal functions [1]. 

It was many years later that this work was that an American biochemist, Martin Rodbell 

worked with a steroid biochemist Oscar Hechter, who influenced Earl W. Sutherland’s work, 

came up with the term “signal transduction.”  This term referred to how individual cells receive 

stimuli, process it, and eventually transmit the information within the cell itself.  He coined the 

phrase in 1969 when he began a ten year period of research on the topic.  By 1972, his work 

with guanosine triphosphate (GTP) revealed that GTP itself promoted a release of bound 

glucagon in the cell, and bound glucagon binding to the cell membrane promoted more 
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formation of GTP.  It was with this GTP molecule that he found stimulation of the guanine 

nucleotide protein, which was later discovered to be the G-protein.  It was this G-protein (or 

guanine nucleotide-binding protein) that was described by Earl W. Sutherland’s “second 

messenger” system.  The G-protein was found to have profound metabolic effects within the 

cell.  For this, he shared the Nobel Prize in Physiology or Medicine in 1994 [2].   

The research that followed regarding G-proteins was not fully understood until recent 

years.  It was known by 1988 that G-proteins had receptors along the cellular membrane which 

interacted with external stimuli.  However, it wasn’t until 2012, that the entire classification and 

understanding of G-protein coupled receptors (GPCR’s) function was understood.  A Nobel Prize 

was given in chemistry that year to Brian Kobilka and Robert Leftkowitz precisely for this work 

[3, 4, 5, 6].  Seven other Nobel Prizes have been awarded for various other aspects of G-protein 

mediated signaling (included are in 1947: Glycogenolysis, 1970: release and reuptake of 

neurotransmitters, 1971: role of adenylate cyclase and second messenger cyclic AMP, 1988: 

important principles for drug treatment targeting GPCRs, 1992: reversible phosphorylation 

activates proteins and regulates cellular processes, 2000: dopamine acts via GPCRs, 2004: work 

on G-protein-olfactory receptors). 

It becomes obvious that G-proteins and their “controllers,” the GPCR, are very 

important to metabolism and cellular function.  For this reason, it was an immediate response 

by the medical and pharmaceutical industry to use these proteins as targets for many drugs.  As 

we jump to current times, the GPCR has been found to be the largest family of transmembrane 

receptors.  They are known as seven-transmembrane receptors due to the passing through of 

the membrane seven times.  Their stimuli can be various, ranging from neurotransmitters, 

hormones, odors, pheromones, or even light.  The stimuli for these receptors is called a ligand, 

and the interaction of the ligand and the receptor is crucial to cellular function.  For this reason, 
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it is an important source of disease in many organisms when they malfunction, and this is why 

approximately 40% of all drugs are aimed towards GPCR’s [7, 8]. 

To the scientific community, it has become an ever-important study to discover the 

structure of GPCRs so that the difference between wild-type, or normal functioning GPCR’s, and 

malfunctioning GPCR’s can be distinguished.  Also, the binding of the stimuli, or ligand, is vastly 

important to understanding the release of the G-protein, and whether some obvious structural 

changes takes place upon this binding of the ligand.  The stage was set for scientists to develop 

ways to analyze the structure of the proteins, whether it be their smallest order of protein 

folding, known as the primary structure, or their highest, functional order of folding, the 

quaternary structure.  For this reason, physicists have recently crossed over into the realm of 

biology to become bio-physicists.  These biophysicists develop not only the method of detection 

and measurement, but also the theory behind the biological function and structure.  Some 

modern methods include Fluorescence Recovery After Photo Bleaching (FRAP), X-ray 

crystallography, and Correlative Light and Electron Microscopy (CLEM) [9, 10, 11, 12].   

 

1.2. Literature Review on a Model GPCR: The Yeast P heromone Receptor 

There has been much controversy over the relationship between oligomerization and signal 

transduction, and the functional significance of oligomerization of GPCRs is still unknown.  What 

is known is that certain GPCRs, such as the d-opioid receptor, dissociates oligomers upon ligand 

binding and tends to precede ligand-mediated endocytosis [13].  This indicates that the 

dissociation of the oligomer plays an important role in endocytosis which leads to signal 

transduction, or in other words, the second messenger system.   

 The Sterile-2 α-factor pheromone receptor, or Ste2, is a fungal pheromone mating 

factor receptor that forms a subcategory of GPCRs.  They are integral membrane proteins that 
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are involved in the response to mating fact

They contain seven hydrophobic transmembrane domains, which are very similar to other 

GPCRs, like rhodopsin. Ste2 currently is known to form homo

mediated endocytosis.  Yet it is unknown if it will form hetero

controversial topic to discuss the size and structure of GPCRs, let alone Ste2.  Experiments using 

detergent to solubilize the α

sedimentation rate.  It was found that α

faster than the IgG marker protein (which is 160 kDa in length) [

detergent on the receptor sedimentation rate is unknown pertaining

and binding of other proteins.  

To understand ligand, or agonist effects, a brief explanation of Ste2 receptor activation 

and signaling is required.  Ste2 is present in two forms within the yeast cell, both a

type cells, which use secretion of pheromones to attract the opposite type for mating.  By using 

selective receptors for the pheromone, secreted by the opposite type, the cells can maneuver 

towards each other and mate.  The figure below depicts the sequence in whic

occur. 

 

  

are involved in the response to mating factors found on the cellular membrane [

They contain seven hydrophobic transmembrane domains, which are very similar to other 

Ste2 currently is known to form homo-oligomers and is subject to ligand

Yet it is unknown if it will form hetero-oligomers, and it has been a 

controversial topic to discuss the size and structure of GPCRs, let alone Ste2.  Experiments using 

α-factor receptors yielded interesting results about the 

sedimentation rate.  It was found that α-factor receptors (Ste2, 48 kDa in length) 

faster than the IgG marker protein (which is 160 kDa in length) [13].  However, the effect of the 

detergent on the receptor sedimentation rate is unknown pertaining to the hydration, shape, 

and binding of other proteins.   

To understand ligand, or agonist effects, a brief explanation of Ste2 receptor activation 

and signaling is required.  Ste2 is present in two forms within the yeast cell, both a

s, which use secretion of pheromones to attract the opposite type for mating.  By using 

selective receptors for the pheromone, secreted by the opposite type, the cells can maneuver 

towards each other and mate.  The figure below depicts the sequence in which these events 
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ors found on the cellular membrane [14, 15, and 16].  

They contain seven hydrophobic transmembrane domains, which are very similar to other 

oligomers and is subject to ligand-

oligomers, and it has been a 

controversial topic to discuss the size and structure of GPCRs, let alone Ste2.  Experiments using 

factor receptors yielded interesting results about the 

factor receptors (Ste2, 48 kDa in length) sediment 

].  However, the effect of the 

to the hydration, shape, 

To understand ligand, or agonist effects, a brief explanation of Ste2 receptor activation 

and signaling is required.  Ste2 is present in two forms within the yeast cell, both a-type and α-

s, which use secretion of pheromones to attract the opposite type for mating.  By using 

selective receptors for the pheromone, secreted by the opposite type, the cells can maneuver 

h these events 
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Figure 1.1. Schematic representation of how two haploid yeast cells signal to one another via pheromones. 

Researchers, Mark C. Overton and Kendall J. Blumer, presented evidence that there may 

be two ways that the Ste2 might be activated to release the hetero-trimer G-protein [17].  They 

state that the Ste2 receptor does not hetero-oligomerize with other membrane receptors, but 

that it is unclear that the size of the homo-oligomer has an effect on the functionality of the 

receptors.  Of the two ways that Ste2 may oligomerize, the first is to consider a dimer of the 

Ste2 receptor bound to a single G-protein, and the two receptors cooperate to ensure binding of 

the α-factor ligand, and hence the release of the G-protein.  The second way that Ste2 may 

oligomerize is to consider the Ste2 forming an oligomer (dimer, tetramer or higher) of Ste2 

receptors, and they help stabilize the agonist-bound receptors in its activated conformational 

state so that one or many of the receptors subunits in a complex can help trigger G-protein 

release [17].  They are uncertain whether or not the oligomerization can occur in vivo, and that 

methods that allow for in vivo research are required to explore this.  The current research aims 

to analyze the effect of ligand on oligomerization and conformation of GPCRs, including Ste2, to 

see if structural changes lead to a release of the G-protein, and hence triggering the signaling 

pathway. 

Consider the two receptor types of each mating species of cell, a-factor mating 

pheromone receptor, and α-factor mating receptor.  a cells are shown in red, with square 

receptors, and α cells are shown with circular receptors.  The pheromones for each type are of 

the same shape as their receptor, square for a, and circles for α.  These pheromones are the 

ligands for this mating receptor, which in the case of the α cell, is the α-factor mating 

pheromone receptor, or Ste2.  In step 1, the cells are near one another and are releasing their 

mating pheromone.  The ligand binds, and the cells move towards the stimuli, or pheromone, as 
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seen in step 2.  Step 3 is when the cells mate and form an a/α cell.  The cells in this experiment 

are of type α and will not change to type a cells, ensuring consistent experimental cells. 

 

1.3. Förster Resonance Energy Transfer 

As stated in the previous section of this chapter, intrinsic membrane proteins recognize and 

respond to a remarkable variety of stimuli that range from light, pressure and other physical 

agents to molecular ligands such as odorants, hormones, and neurotransmitters. G protein-

coupled receptors (GPCRs) form the largest family of such proteins, which interact not only with 

their eponymous G proteins, but also with GPCRs of their own kind to form homo-oligomers or 

of a different kind to form hetero-oligomers [18, 19].  While there is a general agreement that 

many GPCRs form homo-oligomers [18, 20-23], the prevalence, nature, distribution within the 

cell, the functional relevance of those structures as well the effect of ligand binding on them are 

subject of considerable debate [24-28]. 

A variety of methods now exist that approach the problem of protein structure 

determination in living cells.  These include Fluorescence Correlation Spectroscopy (FCS) [29, 

30], Fluorescence Recovery After Photobleaching (FRAP) [29], and Spatial Intensity Distribution 

Analysis (SpiDA) [31, 32].  The in vivo application of Förster Resonance Energy Transfer (FRET) to 

spectrally resolved two-photon fluorescence microscopy is another method that is used for 

determination of oligomeric association stoichiometry and quaternary structure.  Not only has 

the laboratory equipment become far more evolved in recent year for all the above mentioned 

methods, but the analysis has been developed in such a way that creates a cross-examination 

and verification of the theory with the experimental data.  The application of FRET theory in this 

study is based off the analysis of what is known as the apparent FRET efficiency distribution 

histogram (or Eapp histogram), which is found by plotting the number of image pixels falling in a 
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certain interval of Eapp values against the center of that interval [22, 31, 33].  These histograms 

are gathered by using a spectrally resolved two photon-microscope system that employs an 

EMCCD camera that is spectrally resolved at each pixel.  The imaged cells are spectrally unmixed 

using the energy donor (D) and energy acceptor (A) elementary spectra.  This yields donor 

fluorescence intensity in the presence of an acceptor (kDA) as well as the acceptor fluorescence 

intensity in the presence of a donor (kAD) at every pixel of the imaged focal plane of the cell [22, 

34].  The spatial distribution map of FRET efficiencies was computed based on the kDA and kAD 

values using the equation for apparent FRET efficiency, which is derived in Chapter 2 (eq.2.11).  

This equation relies on six values that are found experimentally, these include the two stated kDA 

and kAD values, the wD and wA, which are the integrals of the normalized donor and acceptor 

spectra, and QD (=0.55) is the quantum yield of the donor [22], and QA (=0.61) is the quantum 

yield of the acceptor [22]. The Eapp distributions (or the number of pixels showing a certain FRET 

efficiency value), or histogram as mentioned above, were computed by binning the apparent 

FRET efficiency values of all the pixels (at a bin size of 0.01).  After plotting these histograms 

they are fit using a theoretical model and their peaks are collected [35].  This is the essence of 

the method applied in this thesis, however the most recent experiments have aimed to look at 

effect of averaging of the FRET efficiencies and plotting their values versus the molar 

concentration of the acceptors.  And although this method is constantly developing, many of the 

finer nuances of the application of FRET theory, such as FRET pair coupling (or the selection 

process of choosing correct fluorescent tags that attach to the protein to create FRET)[22, 35], 

spectral overlap in excitation and emission (or how the fluorescent tags excitation spectra only 

marginally overlap so that only the donor is excited, and how to unmix the emission spectra 

from both fluorophores) [36], and signal processing(how to remove background noise, apply 

thresholds to reduce noise, and signal to noise ratio) [22, 35, 33, 37, 38], have all been clearly 
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established prior to this project.  This dissertation aims to focus on the most recent data analysis 

methods, and thusly the determination of the quaternary structure of the Sterile-2 α-factor 

receptor protein (Ste2, Ste2p) in the presence and absence of the natural ligand.  Ste2 is a GPCR 

found in the plasma membrane of yeast cells that is a pheromone receptor involved in cellular 

reproduction through mating, and is important to many fields of research [22, 39]. 

In a prior investigation [22] into the Ste2 receptor oligomerization, the quaternary 

structure was determined to be the parallelogram-shaped tertramer.  In spite of these results, it 

was not concluded whether or not this structure was stable or transient associations of dimers.  

This thesis will focus on the analysis of FRET efficiency histograms in aggregate at first, using a 

meta-histogram (or a histogram of peak positions of Eapp histograms) [33, 40], and then analyzed 

individually as a function of expression level.  The meta-histogram obtained by collecting 

individual cell histogram peaks in this case allows for the extraction of the peaks that 

correspond to a dimer, even if the background of signals is from higher order oligomers.  The 

investigation into individual histograms to fit them with a tetrameric model results in a best fit 

using the parallelogram shaped tetramer model.  The thesis presented aims to show that both 

stable dimers and dynamically associated tetramers of Ste2 may coexist within living yeast cells, 

regardless of the presence and absence of the ligand.  
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Chapter 2 

 MATERIALS AND METHODS  

2.1 Sample Preparation 

2.1.1. Genetic Constructs 

Two variations of the green fluorescent protein (GFP) were used in tagging the receptor of 

interest.  The natural or wild type GFP excites at 395 nm, whereas, the variant used to tag the 

energy donor (due to excitation) was GFP2.  The excitement peak of GFP2 differs from that of the 

wild-type by having shifted to 398 nm.  The cause for this is the addition of the amino-acid 

substitute F64L [41].  GFP2 was created by site-directed mutagenesis which caused nucleotide 

change to result in the substitution of F64L in the protein.  The wild-type GFP is from Aequorea 

Victoria, which was provided by J. Greenblatt of the University of Toronto.  Ste2 receptors were 

tagged with the energy acceptor, which is the yellow fluorescent protein (YFP), adjusted with 

the amino-acid S65G S72A T203Y, which has a maximum excitation peak at 520 nm [22, 38, 42]. 

The Sterile 2 α-factor receptor protein (Ste2p or Ste2) used in this experiment were 

individually fused with both GFP2 and YFP at the same 304 position in the amino acid sequence.  

Eight of the amino acids of the cytoplasmic tail of the Ste2 were removed, resulting in increased 

FRET efficiency.  The plasmids expressing Ste2 were inserted into a strain of Saccharomyces 

Cerevisiae which expressed a non-functioning copy of Ste2 within the chromosome (KBY58; 

MATa leu2–3,112, ura3–52 his3– Δ1 trp1 sst1– Δ5 ste2Δ).  The particular yeast used was the 

type a [43] mating haploids, which contains a mutation (ho) to prevent the cells from switching 

from type a to type α.  This mutation allows for the use of ligand (α-factor) without effecting 

homo-oligomerization [39]. 
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2.1.2. Cell Growth 

Baker’s yeast cells (Saccharomyces cerevisiae) expressing one or both of the plasmids that 

induce growth of GFP2 and YFP were grown on a petri dish consisting of synthetic-complete solid 

medium (agar) which lacked either uracil, or both uracil and tryptophan, allowing for the 

selection of the plasmid of interest.  The plasmids used are VR1988, which contains Ste2 tagged 

with GFP2 and lacks the uracil amino acid, the plasmid VR2033 contains Ste2 tagged with YFP 

and lacks the tryptophan amino acid, the plasmid VR2051 contains Ste2 but is not tagged with 

any fluorescent protein and lacks the uracil amino acid, and lastly, the VR2052 contains Ste2 but 

is not tagged with any fluorescent protein and lacks the tryptophan amino acid. The variations 

transformed were as follows: VR1988 and VR2033 to make cells that express Ste2 tagged with 

both fluorophores, VR1988 and VR2052 to make cells that express Ste2 tagged with only GFP2, 

VR2033 and VR2051 to make cells that express Ste2 tagged with only YFP, and a control culture 

that contained no plasmids. The plates were incubated for five days at 30° C.  After incubating 

for five days, two types of cell suspension were prepared (ligated and non-ligated) from the 

plates using the following protocol. Multiple yeast cell colonies (5-7) were scraped from the 

solid medium and resuspended in 800 μL of 100 mM KCl (to maintain neutral pH which ensures 

constant quantum yield of the fluorescent molecules).  To one of the volumes (denoted as 

ligated), 0.8 µL of 10 mM α-factor in 100 mM sodium acetate solution was added (Zymo 

Research Corporation, Orange, CA, U.S.A.); the final concentration of the α-factor ligand in the 

ligated cellular suspension was 10 µM.  To replicate this treatment, save for the addition of the 

α-factor, 10 µL of 100 mM sodium acetate solution was added to the other volume of cells 

(denoted as non-ligated). After an incubation time of 10 minutes, 200 µL of cells were drawn 

from each of the two suspensions and pipetted onto the surface of separate uncoated glass 

bottom dishes (Matsunami Glass Ind., Ltd, Osaka, Japan). Both dishes were taken to the imaging 
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system (see Two-photon fluorescence micro-spectroscopy section below), where individual cells 

were randomly located, scanned with the excitation beam, and their fluorescence emission 

collected.  Imaging was alternated between the ligated and non-ligated dishes every 50 minutes, 

until ~500 cells were imaged from each dish.  Alternating between the two dishes assured that 

there would be no observable effects due to a difference in time after the cell suspensions were 

prepared. 

 For the most recent experiments involving two wavelength excitation and presence and 

absence of ligand, cells were treated identically above, but were placed on the same dishes that 

were coated with Concanavalin A (described in detail in the Adherence and Immobilization of 

Yeast Cells for Imaging section of the Materials and Methods).  The cells were placed on these 

coated dishes and 10 minutes were allowed to pass before imaging to ensure adherence.   

 Introduction of ligand in this last experiment required the same concentration of α -

factor in the same solution.  However, cells were presented with only potassium chloride and 

sodium acetate before the ligand to generate the cell suspension.  The amount of cell 

suspension added to each dish for imaging was 200 µL and after being imaged at two 

wavelengths the solution was then removed from the dish with the adherent cells.  Then the α-

factor solution was administered in the same volume of 200 µL and imaged again at both 

wavelengths. 

 

2.1.3. Adherence and Immobilization of Yeast Cells for Imaging 

More recent experiments required imaging of yeast cells before and after the introduction of 

ligand.  Sacchromyces Cerevisiae is difficult to image due to being  a non-adherent form of yeast 

that can easily be moved by variations in thermal convection flow within cultures or from 

introduction of other solutions into the cell suspension. However, due to the expense limitation 
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of complicated microfluidic devices that were explored (EMD Millipore CellASIC© ONIX 

Microfluidic Platform, Ballerica, MA, U.S.A.), alternative methods of cell capturing were 

explored.  One method which has been used by many research groups [44, 45] is the coating of 

imaging slides or dishes with a soybean lectin product called Concanavalin A, or Con A.  The 

protocol for creating Con A dishes used in the latest experiments is as follows: 

1. 2 mg of Concanavalin A (C7898-10MG, Sigma-Aldrich, St. Louis, MO, U.S.A.) was 

measured and placed into a glass jar containing 4 mL of autoclaved, deionized water and 

was mixed thoroughly.   

2. Sterile Non-Coated Glass –Bottom Matsunami Dishes (Matsunami Glass Ind., Ltd, Osaka, 

Japan) were laid out on a sterile surface, and the cover was removed. 

3. 100 µL of the aqueous Con A solution was placed onto the dish and covered 

immediately.  30 minutes was allowed to pass to let deposition occur. 

4. The remaining solution was removed from the dishes and discarded.  Then the dishes 

were allowed to dry completely, and stored in a sterile plastic wrap covered with 

aluminium foil until ready for imaging. 

5. Dishes were labelled according to their order in which they would be imaged.   

6. Cell solutions were created as described in the Sample Preparation section of the 

Materials and Methods, and were placed on the dish in volumes of 200µL. 

7. 10 minutes were allowed to pass to ensure cell deposition and adherence. 

8. Cells were imaged at both wavelengths, and then the solution was removed, leaving 

only the cells. 

9. Ligand solution was then administered without moving the dish, and the same cells 

were imaged at both wavelengths. 
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10. Dishes and cells were then discarded, and the process would repeat until the 

experiment was finished. 

 

2.2. Two-Photon Fluorescence Micro-Spectroscopy 

A single pulsed laser was used as the excitation light source for this experiment (SpectraPhysics 

MAITAI One Box Tunable laser, Santa Clara, CA).  The laser is an ultra-short-pulsed (100 

femtosecond), mode-locked, Ti: Sapphire laser that runs at 80 MHz and is tunable between ~ 

690 to 1040 nm.  The full-width half maximum of the laser is ~7 nm.  The laser light was focused 

with an infinity-corrected Plan Apochromat lens (x100 magnification, NA=1.4, using immersion 

oil, Nikon Instruments, Melville, NY, U.S.A.).  The microscope objective was mounted to a Nikon 

Eclipse Ti-Series using the Optivar 1.5x magnification (Nikon Instruments, Melville, NY).  The 

light was scanned using galvanometric scanners (Nutfield Technology, Hudson, NH) and non-

descanned detection was used.  OptiMis TruLine employs a line-scan protocol that leads to 

signals two orders of magnitude higher than that of a point-scan-based system using the same 

line dwell time [46].  The excitation power was measured using a photodiode detector placed at 

the turret objective aperture and was measured to be 800mW at 800nm for the first portion of 

this experiment, then measured to be 300mW at both 800nm and 960nm (for the dual 

excitation experiment).  The light from the fluorescing tags was projected through a 

transmission grating onto a -70 degree Celsius electron-multiplying charged-coupled device 

(EMCCD) camera that achieves singe-photon sensitivity (iXon3 897; Andor Technology, South 

Windsor, CT).  The different wavelengths of light composing the emitted fluorescence are 

separated as a function of pixel position on the CCD array. Therefore, the signal captured by the 

OptiMiS detection system contains three-dimensional information; two of the dimensions are 

spatial dimensions (300 x 200 pixels for the first experiment, 440 x 200 pixels for the second), 
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and the third dimension is wavelength, i.e. each pixel in the 2D image is sampled at 200 

different wavelength channels. The spectral bandwidth ranges from 415 nm to 615 nm with a 

spectral resolution of 1 nm.  The use of a high-speed EMCCD camera allows for the observance 

of time scales that are far shorter than the molecular diffusion time scales [22].  This feature is 

needed when imaging live cells at the molecular level using two-photon microscopy.  The 

system is also calibrated using a known flurorophore called fluorescein, which emits a consistent 

emission spectra which is compared to the known spectra based on the literature.  In this 

experiment, the system was set to take an image of 300(x-pixels) by 200(y-pixels) at a spectral 

acquisition dwell time of 100 microseconds and at a spectral resolution of 1 nanometer.  Since 

the system uses a line scan method, each line dwell time was set 50 µs for the first experiment 

and 35 µs for the second, and the total acquisition time for a full set of spectrally resolved 

images (for example 440x200 pixels, 200 wavelengths per pixel) was ~7 seconds. 

 

2.3. Choosing the FRET Pairs 

Since the microscope system is that of a two-photon type, it requires that the wavelength be 

selected at exactly half of that which you are trying to excite at.  In this case, GFP2 was used as 

the donor of energy, and has an excitation maximum at ~400 nm [42, 47], hence two photon 

excitation at ~800 nm.  GFP2 also has large Stokes shift, and hence avoids direct excitation of the 

acceptor, a crucial factor when determining FRET pairs.  The acceptor in this experiment was 

chosen to be YFP since its excitation spectrum overlaps directly with the emission spectrum of 

the donor.  YFP also has a two-photon excitation maximum at ~1020 nm [22, 38, 42], which 

means it cannot be directly excited by the laser emission at ~800 nm.  Furthermore, the laser 

was checked for full-width half maximum (FWHM) and achieved ~30 nm, helping to verify the 

absence of overlap in excitation.   
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2.4. Emission Spectra 

Yeast cells expressing the Ste2  protein tagged with the GFP2 and YFP are placed on 35mm 

Matsunami glass bottom dishes (non-coated) and placed on the x-y-z stage of the microscope 

and placed on top of the objective using immersion oil of the same NA as the glass on the 

bottom of the glass bottom dish.  The spectral images of the GFP2 were obtained by using the 

800nm pulsed laser that had a mean power of ~1.1W at the exit of the laser.  Emission spectra 

were obtained for several cells expressing only the GFP2 tag.  The spectra were averaged and 

normalized with respect to their maximum emission intensities to obtain the normalized 

spectrum for the GFP2 donor (D).  Similarly, the emission spectra for the acceptor-only tagged 

yeast cells were obtained and averaged and normalized.   This time, the acceptor (A) is YFP, 

which has a red-shifted excitation spectrum, requires 955nm excitation and nearly double the 

power because YFP does not absorb as efficiently at 800nm.  

 

2.5. Unmixing of Measured Fluorescence Spectra 

To properly analyze the emission fluorescence gathered by the system, “unmixing” of the 

elementary spectra coming from both fluorescent tags is required.  A single pixel within a 2D 

fluorescent image contains a power spectrum arising from the emission of fluorescent 

molecules that are contained within the sample voxel corresponding to that particular pixel. 

Therefore, the measured power spectrum is a linear combination of the power spectra of the 

individual fluorescent tags, which can be denoted by ��, ��, … , ��, multiplied by a coefficient 

proportional to the concentration of the corresponding fluorescent tag, i.e. ��, ��, … , �� 
Thus the measured power spectrum can be written as:  

� 	 �
 · � 
 �, (2.1) 
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where P is the measured intensity spectrum vector for m wavelength channels, � is the 

experimental noise term coming from the camera noise or random external noise, which is 

treated as Gaussian noise where the mean value is zero and has a standard deviation 

(essentially a first order approximation), and �
 	 ����� … ��� is the � � � matrix composed of 

the l individual spectra of the fluorescent tags placed side by side in a matrix with each tag 

having m measured wavelength channels, and � 	 �����, … , ��� is a vector of the coefficients. 

Our goal is to extract the k vector which will give us an indication of the amount of fluorescent 

molecules residing within a particular excitation voxel for each fluorescent tag. This was 

accomplished by using a least squares minimization procedure, i.e.: 

������ � �
 · ���
�   (2.2) 

 

Eq. (2.2) represents the minimal value of the second norm square of the expression within �·�. 

Taking the derivative of the expression to be minimized by k, equating to zero, and rearranging 

the equation yields: 

� 	 ��
� · �
� � · �
� · �  (2.3) 

The superscript T indicates the transpose of the matrix. The quantities on the right side of eq. 

(2.3) are measured, while �
 was measured by imaging cells transformed with a single type of 

plasmid, i.e. either Ste2-GFP2 only or Ste2-YFPonly. The spectrum for each measured tag was 

normalized to its maximum. P as mentioned above is the measured pixel power spectrum along 

m channels.  

  In order to reduce the pixel non-uniformity of the measuring system we consider a tag 

which we call background tag. This artificial tag is plugged into Eq. (2.3) as a third tag which has 

a unity power spectrum across the m channels.  
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Spectral images obtained from cells co-expressing Ste2p-GFP2 and Ste2p-YFPproteins 

were unmixed (described above) using SD (elementary donor power spectrum) and SA 

(elementary acceptor power spectrum) to obtain separate donor (denoted by k1 =k
DA) and 

acceptor (k2= k
AD) images. The apparent FRET efficiency (Eapp) distribution in a given optical 

section of an imaged cell, as calculated using eq. (2.11), was determined for each image pixel 

using kDA, kAD
, w

A and wD (which are the integrals of the measured elementary spectra of A and 

D, respectively), and QD and QA which are the quantum yields of D and A, respectively, and the 

quantum yield values(QD = 0.55 and Q
A= 0.61) were obtained from the literature [22, 32]. It 

should be noted, that to arrive at eq. (2.11) in chapter 2.6.3, it is assumed that direct excitation 

of the acceptor fluorophore is negligible. The computations, for both spectral unmixing and 

!"## determination, were performed using a program written in house using Matlab 

(MathWorks Inc., USA). Pseudo-FRET efficiencies for pixels showing only background noise were 

avoided by setting Eapp=0 for the pixels characterized by signal to noise ratios less than one 

standard deviation of the noise for both donor and acceptor signals.  

 

2.6. Signal Unmixing Details and Method 

2.6.1. Threshold Based on Signal to Noise Ratio 

The threshold processes is performed as follows:  

a. The unmixing is calculated using the method described earlier for each pixel. 

b. We multiply the computed � vector with the measured �
matrix, which would give us 

the fitted curve.  

c. We then subtract the fitted curve from the measured spectrum and end up with the 

noise term. 
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d. We then calculate the noise distribution’s standard deviation, σ, and the mean should 

turn out to be zero. 

e. After calculating σ we compare it to the maximum signal portion coming from each 

individual tag that participates in the FRET processes. If the maximum of the signal is 

below $% · σ for either of the tags, then this pixel is disregarded, otherwise the pixel is 

considered. $% is the chosen threshold which is based on Eapp image sharpness. 

The threshold for the above described process was 1. 

 

2.6.2. Fluorescence Background Subtraction 

In the biological system discussed in this paper, we are using two fluorescent molecules, GFP2 

used as a donor and YFP as an acceptor.  These molecules are used for tagging the protein of 

interest which is Ste2.  Moreover, additional emission can come from auto-fluorescence or 

introduced by the cells or background emission that can result from either white light 

illumination penetrating the system or pixel non-uniformity.  The auto-fluorescence in the 

presented system is negligible; however, we decided to still consider the background.  Using the 

method described above we can unmix and subtract the background intensity distribution. The 

subtraction can be performed by assuming that the background is one of the fluorescent tags.  

The normalized spectrum of that virtual tag, within the first order approximation, is unity for all 

the measured wavelengths. 

 

2.6.3. Theory of the Method 

Many of the figures in this thesis rely solely on emissions coming from only that of the donor 

molecules.  This was used to determine concentration and to attempt to derive the oligomeric 

structure based on other analyses using the data already collected through the spectrometer or 
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EMCCD.  Through careful measurements of various emissions at certain excitation wavelengths, 

one can derive the loss of donor emission due to FRET, or&'(FRET-.  The equation is  

&'(FRET- 	  &.(FRET- /' /.⁄  

    (2.4) 

where /'and /. are the quantum yields as discussed in the Chapter 2.5, and &.(FRET- is loss 

of acceptor emission through FRET.  Not only were apparent FRET efficiencies used to analyze 

the oligomeric structure, but also the donor only emission as predicted by FRET theory.  Starting 

with the expression for the total number of photons emitted from both fluorescent species in 

the presence of FRET 

 

&DA(3ex- 
 &AD(3ex- 	  &D(3ex- � &D(FRET- 
 &A(3ex- 
 &A(FRET- 

   (2.5) 

where, 

&DA(3ex- 	 �DA(3ex- 6 �7(3em-d3em 	 
3em

�DA(3ex-:D 

     (2.6) 

and, 

&AD(3ex- 	 �AD(3ex- 6 �;(3em-d3em 	 
3em

�AD(3ex-:A 

     (2.7) 

which were previously derived by Raicu et. al [34].  &DA(3ex- is the number of photons 

emitted by the donor (D) in the presence of the acceptor (A) as measured at the 

excitation wavelength 3ex.  &AD(3ex- is the number of photons emitted by the acceptor 
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in the presence of the donor at the excitation wavelength 3ex.   �DA(3ex- is a component 

of calculation of FDA, and likewise �AD(3ex- is a component of calculation of FAD.   

This leaves �;(3em- and �7(3em-, which are the emission spectrum normalized to 

one of acceptors and donors.  Also, :D and :A are the integrals of elementary spectra of 

both donor and acceptors, respectively.   

Next, Equation (2.5) can be separated into equations that describe only FDA or FAD by 

extracting only the terms that pertain to the donor, or only the acceptor.  Here, &D(3ex- is the 

donor emission in the absence of FRET. 

&DA(3ex- 	  &D(3ex- � &D(FRET- 

        (2.8) 

and 

&AD(3ex- 	  &A(3ex- 
 &A(FRET- 

        (2.9) 

Thus allowing to solve for &D(FRET- which is the fluorescence emission of the donor 

lost due to the presence of FRET which is equation 2.4 where /D
and /A

 are the quantum 

yields as discussed in Chapter 2.5.  These values were used to find &D(FRET- or FD which was 

used in various portions of this paper to determine concentration of molecules based on 

the donor only emission in the presence of FRET.  The apparent FRET efficiency is then given 

by: 

!<== 	  &D(FRET-
&D(3ex- . 

(2.10) 

or likewise, 
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!"## 	 ?1 
 /A:B�BA
/B:A�ABC 

(2.11) 

Note that equation 2.11 is a special case of using only one excitation wavelength.  Yeast cells 

were transformed to express Ste2 receptors with GFP2-tagged and YFP-tagged proteins to 

determine whether they self-associate to form oligomers.  Spectral images obtained from cells 

expressing Ste2 with both GFP2-tagged and YFP-tagged proteins were unmixed using the various 

software platforms to obtain separate donor (denoted by kDA) and acceptor (kAD) images, as 

described in previous publications[33, 34, 35, 37, 38, 47]. The apparent FRET efficiency (Eapp) 

distribution of an imaged cell by selection of an area cross-section of the cell was determined for 

each image pixel using kDA and kAD and the equation 2.11, where wA and wD are the integrals of 

the measured elementary spectra of the acceptors fluorophores and donor fluorophores, 

respectively. QD and QA are the quantum yields of D and A, respectively [37, 41], and their values 

(/' = 0.55 and /. = 0.61) were obtained from previous publications as well [22]. All the 

computations were performed using the Matlab program (The MathWorks, Inc., USA) and an in 

house software called OptiMiS Data Cruncher or OptiMiS DC (Courtesy of Dr. Gabriel Biener of 

the Raicu Group). Pseudo-FRET efficiencies for pixels showing only background noise were 

avoided by use of a threshold within the program that is based off of the signal to noise ratio 

(described below). 

 

2.7. Determination of Donor and Acceptor Concentrat ions 

The second explorative experiments were done in an effort to approximate donor and acceptor 

concentration within living cells, as well as use that concentration information to see there was 

an effect on average Eapp for each cell in the absence and presence of the ligand.  To determine 
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the concentrations of donors and acceptors, information that was not available in previous 

experiments was required.  The primary driver of this experiment was specifically the acceptor 

concentration, or more specifically acceptor molar concentration.  However, to find this 

information, exciting the cells at both the donor maxima and the acceptor maxima was 

required.  Hence, a dual excitation scheme was adopted to gather this information.  Once the 

cells were immobilized, as described in the Adherence and Immobilization of Yeast Cells for 

Imaging portion of the Materials and Methods section, the same cells could be dually excited in 

the absence and presence of the ligand.  First, cells were added to Con A coated dishes and 

imaged at both 800 nm and 960 nm excitations with laser power equal to 300 mW for both 

scans.  Second, the solution was removed, and ligand solution was added, and again the same 

cells were imaged at 800 nm and 960 nm at the same power of 300 mW for both scans.  Over 19 

fields of view were scanned for each wavelength and in the absence and presence of the ligand, 

collecting a number of cells in each field of view.  Once the raw data was collected, the images 

were spectrally unmixed using OptiMiS DC software described in the Unmixing section of the 

Materials and Methods.  The 800 nm data before ligand introduction was unmixed, only 

selecting the mebrane with a region of interest.  After collecting numerous membranes of 

various cells within each field of view, the regions of interest were saved and used later on the 

other data to maintain the same numbers of pixels used for averaging.  Next, the other data was 

unmixed that contained 960 nm in the absence of ligand, and 800 nm and 960 nm in the 

presence of ligand.  The software gives an output of kDA, kAD, Eapp, and FD only images, as well as 

histograms of each region of interest taken.  For the analysis of averaging Eapp and calculating 

donor and acceptor molar concentrations, we need only the information from the kDA and kAD 

images.   
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 Using the unixed data sets, we would now take the kADmeasurements (which are now in 

.tif format) and insert them into ImageJ, and using the region of interest manager, import the 

regions of interest selected when unmixing the first set of 800 nm data.  Now, ImageJ would be 

used to measure the intensity via histogram, this data would be then moved to Microsoft Excel 

for later analysis.  Before any calculations were made, discarding the pixels with zero intensity 

ensured an average that was only of actual photon counts, not zero intensity counts.  Also, there 

was no thresholding done to the KDA and KAD images since each should represent only real 

photons being counted by the camera for those spectra. 

  To understand the method of obtaining the molar concentration and average Eapp, we 

must start with the mathematics.  The derivations herein are provided by Dr. Michael Stoneman 

and Dr. Valerica Raicu.  Starting from the FRET equation for Eapp:  

!"## 	 &'(D!$, 3� -&'(3�- 	  &'(3�- � &'.(3�-&'(3�- 	 1 � &'.(3�-&'(3�-  

     (2.12) 

The Eapp equation relies on the donor fluorescence intensity due to resonant energy transfer 

(RET) at the first wavelength, or FD(RET, λ1), and donor fluorescence only at wavelength one 

FD(λ1).  But FD(RET, λ1) can be rewritten as FD(λ1) - F
DA(λ1), where FDA(λ1) is the donor fluorescence 

intensity in the presence of an acceptor at the first wavelength, accounting for the transfer due 

to RET, and hence we see a reduced equation.  Now, assuming we can obtain rates of excitation 

of acceptors only at a first and second wavelength, then EFGHI,A
is the rate of excitation of the 

acceptor at the first wavelength, and EFGHJ,A
is the rate of excitation of the acceptor at the second 

wavelength.  Similarly, we can obtain the rates of excitation of the donors only at the first and 

second wavelength, then then EFGHI,B
is the rate of excitation of the donor at the first wavelength, 

and EFGHJ,B
 is the rate of excitation of the donor at the second wavelength.  Then we can obtain 
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Gamma ratios of either the donor from donor only expressing cells (GDR) or the acceptor from 

acceptor only expressing cells (GAR), or 
KLMNJ,O
KLMNI,O and 

KLMNJ,P
KLMNI,P, respectively.  Now, we need some 

fundamental groups of equations to derive the concentrations of donors and acceptors: 

Fundamental Group 1: 

&'.(3�- 	 &'(3�- � &'(D!$, 3�- 

(2.13) 

&.'(3�- 	 &.(3�- 
 &.(D!$, 3�- 

(2.14) 

&'.(3�- 	 &'(3�- � &'(D!$, 3�- 

(2.15) 

&.'(3�- 	 &.(3�- 
 &.(D!$, 3�- 

(2.16) 

Fundamental Group 2: 

&'(D!$, 3�- 	 EFGHI,B · /' · µR�ST · ER�ST 

(2.17) 

&'(D!$, 3�- 	 EFGHJ,B · /' · µR�ST · ER�ST 

(2.18) 

&'(D!$, 3�- 	 EFGHJ,B
EFGHI,B · &'(D!$, 3�- 

(2.19) 

Fundamental Group 3: 

&'(3�- 	 EFGHI,B · /' · �7�U 

(2.20) 

&'(3�- 	 EFGHJ,B · /' · �7�U 
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(2.21) 

&.(3�- 	 EFGHI,A · /. · �;�U 

(2.22) 

&.(3�- 	 EFGHJ,A · /. · �;�U 

(2.23) 

Relationship 1: 

&'(3�- 	 EFGHJ,B
EFGHI,B · &'(3�- 

(2.24) 

&.(3�- 	 EFGHJ,A
EFGHI,A · &.(3�- 

(2.25) 

Relationship 2: 

&'(D!$, 3�- 	 /'
/. · &.(D!$, 3�- 

(2.26) 

&'(D!$, 3�- 	 /'
/. · &.(D!$, 3�- 

(2.27) 

Now, from these assumptions we can calculate FRET efficiency as per eq. 2.12.  To get donor 

concentration we need &'(3�- and using eq 2.13 we can rewrite it as 

&'(3�- 	 &'.(3�- 
 &'(D!$, 3�- 

and using eq. 2.26 

&'(3�- 	 &'.(3�- 
 /'
/. · &.(D!$, 3�- 

and using eq. 2.14 
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&'(3�- 	 &'.(3�- 
 /'
/. V&.'(3�� � &.(3�-� 

Rearrange 

&'(3�- 	 &'.(3�- 
 /'
/. · &.'(3�- � /'

/. · &.(3�- 

Now, if &.(3�- can be assumed to be zero, then this can be determined from measurements, 

but if not, then using eq. 2.25 the equation becomes 

&'(3�- 	 &'.(3�- 
 /'
/. · &.'(3�- � /'

/. · EFGHI,A
EFGHJ,A · &.(3�- 

and &.(3�- is found from rearranging eq. 2.16 

&.(3�- 	 &.'(3�- 
 &.(D!$, 3�- 

and using eq. 2.27 

&.(3�- 	 &.'(3�- � /'
/. · &'(D!$, 3�- 

and using eq. 2.19 

&.(3�- 	 &.'(3�- � /'
/. · EFGHJ,B

EFGHI,B · &'(D!$, 3�- 

then eq. 2.27 becomes 

&.(3�- 	 &.'(3�- � EFGHJ,B
EFGHI,B · &.(D!$, 3�- 

and plug into eq. 2.14 

&.(3�- 	 &.'(3�- 
 EFGHJ,B
EFGHI,B · V&.'(3�- � &.(3�-W  

and if &.(3�- is assumed to be zero, then everything in the above equation can be determined 

from measurements.  If we don’t make this assumption, then rearrange 

&.(3�- 	 &.'(3�- � EFGHJ,B
EFGHI,B · &.'(3�- 
 EFGHJ,B

EFGHI,B · &.(3�-  
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and using eq. 2.27 becomes 

&.(3�- 	 &.'(3�- � EFGHJ,B
EFGHI,B · &.'(3�- 
 EFGHJ,B

EFGHI,B · EFGHI,A
EFGHJ,A · &.(3�-  

rearrange this equation  

&.(3�- X1 � EFGHJ,B
EFGHI,B · EFGHI,A

EFGHJ,AY 	 &.'(3�- � EFGHJ,B
EFGHI,B · &.'(3�-  

so now we have a fully measureable &.(3�- by rearranging into 

&.(3�- 	 &.'(3�- � KLMNJ,O
KLMNI,O · &.'(3�- 

1 � KLMNJ,O
KLMNI,O · KLMNI,P

KLMNJ,P
 

which allows for the calculation of acceptor concentration by eq. 2.23 

�;�U 	 &.(3�-
EFGHJ,A · /. 	 &.Z��[(960-�A  

(2.28) 

and use 3� measurement on solution of proteins at known concentration to obtain EFGHJ,A
 and 

where �A 	 _�Z`a(;- 	 Ebcd,A · /A is the slope of the line which is the measurements of 

intensities at various concentrations of acceptor protein solutions. 

 Now we need to derive the donor concentration accounting for &.(3�- not equal to 

zero.  Using eq. 2.25 &'(3�- becomes 

&'(3�- 	 &'.(3�- 
 /'
/. · &.'(3�- � /'

/. · EFGHI,A
EFGHJ,A · &.(3�- 

and using the above derivation for &.(3�-, &'(3�- becomes 

&'(3�- 	 &'.(3�- 
 /'
/. · &.'(3�- � /'

/. · EFGHI,A
EFGHJ,A ·

ef
ff
g&.'(3�- � KLMNJ,O

KLMNI,O · &.'(3�- 
1 � KLMNJ,O

KLMNI,O · KLMNI,P
KLMNJ,P hi

ii
j
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Now, we can use &'(3�- to calculate donor concentration from eq. 2.20 

�7�U 	 &'(3�-
EFGHI,B · /' 	 &'Z��[(800-�B  

(2.29) 

using 3� measurement on solution of proteins at known concentration to obtain EFGHI,Band 
where �B 	 _�Z`a(7- 	  EFGHI,B · /B is the slope of the line which is the measurements of 

intensities at various concentrations of the donor protein solution. 

 Now, to get the GAR and GDR, an assumption had to be made.  The assumption was 

that you could get excitation rates by looking solely at the kDA or kAD images since they are 

emissions of solutions of donors or acceptors in the presence of the opposite species, which was 

over a certain duration of acquisition time.  Hence, you have a rate of emission, or de-excitation 

rate.  Since we want to see the most common rate of transfer if there was any variation, the 

average value of kDA or kAD was used to calculate GAR or GDR.  Therefore: 

n;D 	 Eodd,A
Ebcd,A 	 ;paqrsa �.'(800-;paqrsa �.'(960- 

      (2.24) 

and, 

 

n7D 	 Eodd,B
Ebcd,B 	 ;paqrsa �'.(960-;paqrsa �'.(800- 

(2.25) 

These GAR and GDR values were measured on cells transformed with only the acceptor 

fluorophores or only donor fluorophores to ensure emission was only from one species. 
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 The next step was to convert these total concentrations to molar fractions by simply 

taking total concentration of one species divided by the sum of the total concentration of both 

species.   

XD= [D]T / ([D]T + [A]T) = molar fraction of donors 

and, 

XA= [A]T / ([D]T + [A]T) = molar fraction of acceptors 

 The final step was to calculate the average Eapp for the same regions of interest for the 

same cells.  As seen in the above equations, we can get average Eapp from 

!"## 	 1 �  &'.(800-&'Z��[(800-. 

These values were calculated and all information was tabulated.  Now the data could be 

graphed as average Eapp as a function of molar concentration of acceptors.  Once this was done, 

the sum of both species total concentrations was sorted in ascending order, and ranges were 

chosen to analyze cells at different expression levels.  Ranges of concentrations (t ) went from 

0 u t v 10 µM, 10 u t v 20 µM, 20 u t v 30 µM, 30 u t v 40 µM, and lastly 40 µM and 

above as the last range.  When the cells were sorted, the same cells had to stay within the same 

concentration range from the absence to presence of ligand, or they were discarded due to high 

variations in the expression levels.  Therefore, plotting going further had the same number of 

cells in each range from the absence to the presence of ligand.  For each range, the plot of 

average Eapp versus XA was made, and a trendline was added to see if the slopes changed from 

the absence to the presence of ligand. 
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Chapter 3 

THEORETICAL MODELING 

3.1. Analysis of E app Histograms 

Of the cells co-expressing GFP2 and YFP tagged Ste2 for the first experiment, the majority of 

these had narrower Eapp histogram peaks positioned along the horizontal axis of the graph 

(which corresponds to the various Eapp efficiencies) with a major or predominant peak (See 

Chapter 4).  These peaks were fitted with a single Gaussian function.  Similarly, the slightly more 

broad histograms (or those displaying a variety of peaks across a wider distribution of Eapp 

efficiencies) that still showed a predominant peak, were also fit with a single Gaussian function.  

In both cases, the peak position of these predominant peaks were collected and binned to 

create a “meta-histogram” or a histogram of the various peak positions across all cells in either 

the ligated or non-ligated case (the data of each was kept separate for analysis).  The meta-

histogram showed the total number of peak positions of all the cells in one category at an 

interval of 0.02%.  The meta-histograms displayed a variety of peaks and were fit with a dimers 

only oligomer model.   The details of the derivation of this model are given in the next section.  

The fitting of the simulated Gaussian curves to the experimental data was done by minimizing 

the mismatch between experimental and simulated data by adjusting the variable parameters of 

the model. 

In this analysis, the exact value of the pair-wise FRET efficiency for a dimer (Ed) and the 

most probable number of donors per pixel (n) both determine the position of the various peaks 

in a histogram and are adjustable parameters.  Ed depends directly on the distance between 

individual donors and acceptors within the protein complex.  This is relative to the Förster radius 

corresponding to the FRET pair used in this experiment. 
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The width of the Gaussians in the meta-histograms is not considered of any real significance for 

this analysis.  The factors affecting the width are non-systematical and these include: the 

orientation of the dipoles, variation of pH, and possible broadening due to mixture between 

dimers and higher order oligomer structures.  These are considered independent parameters 

and are adjusted independently for the fitting of the meta-histogram. 

Next, the amplitudes of the Gaussian curves in the meta-histogram depend on the 

predominant peak position, so hence it is the number of cells corresponding to a particular Eapp 

value, as well as the total number of cells imaged.  This means that we can not necessarily 

predict amplitudes in a meta-histogram, but rather their peak positions along the Eapp 

distribution.  Also, it has been observed that the widths of the individual histograms 

corresponding to the higher values of Eapp, is larger and their amplitudes lower compared to 

those with lower Eapp values, this could lead to missing of some peaks of higher Eapp values for 

the cells, whose histograms showing multiple peaks. 

The vast majority of the histograms fell within the narrow category and hence the 

predominant peaks showed an obvious fit by the dimer model.  However, some histograms 

showed peaks beyond the Ed value, and these tended to be broader histograms.  In this case, 

these histograms were pulled aside and fit with the dimer model as well and the results are 

discussed in the Results section.   

Since each image contains information about the donor intensities, we use this 

accompanying data to create a distribution of weighted average of what is known as FDonly 

(fluorescence intensity due to donor only).  In this case, the weighted average of FDonly per cell 

allows for essentially a meta-histogram of FDonly values to be made.  This allowed us to take our 

analysis one step further to categorize the level of expression based on fluorescence intensity of 

the donors.  The use of this FDonly value will be further discussed in the Results section as well. 
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Lastly, the potential for partiality towards the dimer model may occur in the meta-

histogram only if there is photo-bleaching or high intensity cells due to high expression.  If the 

intensity gets too high for some complexes, and the mixing tends towards only a certain peak in 

the histogram, you can have the histogram collapse to a single large, predominant peak.  In this 

experiment, the cells that are too high in expression were very few (approximately 20 cells), and 

wouldn’t have biased the results since these are within range of error.  As for the partiality 

towards the dimer model in meta-histograms, the choice of the maximum peak leads to much 

overlap below Ed.  Some cells were above Ed, however, the vast majority of maximum peaks 

were below Ed, and the counting of these peaks and binning them lead to many histogram 

counts below Ed.  This allows for the peaks of the dimer to not be washed out by the broadening 

of the meta-histogram due to tetrameric oligomers mixing peaks (or smoothing out the meta-

histogram).  These peaks yield the contour in which the model is fit to, so if the obvious 

contours above the tetramer mixing (and smoothing out) are that of the dimer, then the dimer 

model is going to be the obvious best fit.  Histogram collapse can be defined as a measured 

histogram showing one predominant configuration being produced within the cell, so much so 

that it overwhelms any broadening due to higher oligomerization and creates a dominant peak 

due to that configuration being produced vastly more than any other.  This is noted for this 

experiment, but since low counts of cells were in this category, the effect appears to be 

negligible. 

 

3.2. Development of the Dimer and Tetramer Models 

3.2.1. Theoretical Modeling of the Eapp Histograms in Terms of the Dimer Model 

Theodor Förster was a German physical chemist who developed a theory related to a form of 

non-radiative energy transfer between molecules in 1946.  His work has since then been 
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dramatically developed and the application of the theory of Resonance Energy Transfer (RET) is 

far reaching.  His legacy lives on through the Förster Resonance Energy Transfer (FRET) theory 

and also the distance at which these interactions occur are also named after him, the Förster 

radius.   

For resonance energy transfer to relate to physical properties of molecules, there must 

be some physical, measurable quantity from them.  For derivations herein, thanks go out to Dr. 

Valerica Raicu for his expansion of the FRET theory, and the equations themselves [48].  FRET 

theory starts from simple case of a single energy donor and a single energy acceptor.  Starting 

with the emission rate of photons from the molecules, calculations for the quantum yield for 

both the donor (D) and the acceptor (A) are as follows 

/' 	 Ez,B
Ez,B 
 E{z,B 

(3.1) 

and 

/. 	 Ez,A
Ez,A 
 E{z,A 

(3.2) 

where Ez,| and E{z,| (for X = D or A) are the rate constants of de-excitation through radiative 

and non-radiative processes. Also, 

1(Ez,| 
 E{z,|- 	 τ| 

(3.3) 

where τ| is the lifetime of an excited molecule X, or a donor or acceptor.  Now, say excitation 

energy can be transferred from donor (D) to acceptor (A).  This means an additional pathway 

exists for de-excitation of molecules.  Therefore, the quantum yield is changed to 
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/'. 	 Ez,B
Ez,B 
 E{z,B 
 E~�� 

(3.4) 

and hence  

1(Ez,| 
 E{z,| 
 E~��- 	 τBA 

(3.5) 

is the fluorescence lifetime of donor in the presence of an acceptor (otherwise known as FRET).  

Now, assume the mechanism of transfer is dipolar, or Förster type, then the rate constant of 

non-radiative energy transfer from a donor to an acceptor is 

E�~�� 	 (Ez,B 
 E{z,B- �Rdq �c
 

(3.6) 

where r is the distance between a donor and acceptor, and Rd is the Förster distance or radius. 

Now, RET only takes into account the de-excitation of the donor, but it also effects the 

excitation of the acceptor and not its quantum yield.  This leads to a way to calculate the 

amount of excitations dissipated through RET by the donor.  This term is called RET efficiency 

and is calculated by 

! 	 E~��
Ez,B 
 E{z,B 
 E~�� 

(3.7) 

and assuming τBA v τB, and τAis unaffected by RET, this equation can be rewritten as 

! 	 1 � τBAτB  

(3.8) 

which can also be rewritten as 
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! 	 Rdc
Rdc 
 q 

(3.9) 

which relates distance between the donor and acceptor to RET efficiency.  

 From this simple case of one donor and acceptor, we can see how efficiency of non-

radiative energy transfer, or resonant energy transfer, can play a large role in understanding 

interactions between fluorescent molecules.   

The rate of energy transfer between a donor and  acceptor is given by equation 3.6, 

where Dd is the Förster distance,  Ez is radiaative enery transfer rate of donor and  E{z is 

nonradiative energy transfer rate for donor and q is the distance between donor and acceptor.  

And pairwise FRET efficiency is defined as 

!# 	 E~��
E{z,B 
 Ez,B 
 E~��  

          (3.10) 

or, in terms of Förster distance and the distace between the donor and acceptor,  !# can be 

expressed as 

!# 	 �~�z �c

1 
 �~�z �c 

           (3.11) 

thus, the apparent FRET efficiency for any complex  of acceptor and donor molecules is  given by 

!"## 	 1� � !S
�

S��
 

          (3.12) 

where k is number of donors in the complex and  !S  is FRET efficiency for the �Th   donor.    



www.manaraa.com

36 

  

   

 

In this case, some particular complexes form purely dimers, that means there are no monomers 

or higher order oligomers are present.  Then, !S  will be simply equal to !# for each FRET 

productive complex (dimer). The dimers which have only acceptors or only donors, do not FRET, 

which can be regarded as unproductive FRET pairs. Thus the FRET efficiency for a collection of 

dimers will be 

!"## 	 1� � !#
�

S��
 

          (3.13) 

Intuitively we may want to call !# as !�  for dimers. Thus 

!"## 	 1� � !�
�

S��
 

          (3.14) 

 

3.2.2. Probability of Donor and Acceptors, and Calculating Eapp from Dimer 

Mixing 

Now, let us consider, on average,� monomers in a pixel of a FRET efficiency map, and all the 

monomers exist only in dimer form and number of donors is represented by a variable �, then 

there will be � � � acceptors. 

If donors (7) to acceptors (;) concentration ratio is given as ρ, then the probability of a 

monomer to be a donor can be expressed in terms of ρ, as 

�(7- 	 ρ1 
 ρ 

           (3.15) 

and the probability of a monomer to be an acceptor can be written as 
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�(;- 	 11 
 ρ . 
           (3.16) 

Therefore, for � monomers, the probability that there are � donors (and thus  � � � acceptors) 

is given assuming a binomial distribution:  

�(�, �- 	 ����  �(7-�   �(;-{ � 

        (3.17) 

We then derived a general mathematical expression for the FRET efficiencies (!"##) for any � 

and �.  The expression is give as  

_aq�a��!"##� 	 1� � � (� � 2�-�
S��J

S�d

{ �

���
!�  

        (3.18) 

where � 	 ���(�, � � �- 

Now, consider a Gaussian with peak (mean positions) as  !"##  and its amplitude is 

proportional to a general expression for probability for their being � donors out of  � 

monomers, which depends on donors to acceptors concentration ratio ρ.  Then a function, 

which is the sum of all these Gaussians for variables as numbers of monomers (�-, pairwise 

FRET efficiency for the dimer (which depends on the distance between donors and acceptor and 

Förster distance for the flurophores pair) !�, and donors to acceptors concentration ratio ρ and 

standard deviation σ, is given as 

��!"##� 	 1� � � (� � 2�-�
S��J

S�d
!�   ;

{ �

���
(�, ρ- � 

       (3.19) 

where ;(�, ρ- is the amplitude of a Gaussian and is given by 
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;(�, ρ- 	 �Z���. ����  �(7-�   �(;-{ � 

        (3.20) 

where �Z���.  is a proportionality constant.  So, if one has an experimental histogram for the 

complexes which have only dimeric form, then the histogram can be fitted with this model (or 

the function � ) and �, � and !�   and  the  �Z���.   can be used  as fitting parameters. 

 

3.2.3 Thoeretical Modeling of FRET efficiencies in the Parallelogram-Shaped Tetramer 

If q� and q� are the two sides of the parellogram and α is the angle between the two sides of the 

parellogram then the digonal q�� is given by 

q�� 	 (q�� 
 q�� � 2q�q� cos �-� �⁄  

   (3.21) 

Also the  pairwise FRET efficiency between � 	 1 and � 	 1 is given by 

!� 	 �~�zI �c

1 
 �~�zI �c 

   (3.22) 

and from Eq. (3.22) 

�Ddq� �c 	 !�1 � !� 

   (3.23) 

and thus 

�Ddq� �c 	 !�1 � !� �q�q��c
 

    (3.24) 

where k can take two values,  �1  and  �2. 
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Now, the apparent FRET efficiency for the configuration shown in the Figure 3.2 below is given 

by 

recognizing  as and using equation (3.22

 

Figure 3.2. Parallelogram-shaped tetramer g

distances between two protomers in a tetramer depending on the side chosen, 

between opposite sides of a parallelogram configuration, lastly 

These fitting parameters are used to change the location of the various peaks in a meta

allowing for a theoretical model of the tetramer to be applied to experimental data

 

One configuration of a parallelogram

donors and one acceptor as seen in Figure 3.2.  Then  

parallelogram,  α is the angle between two side of the par

diagonals of the parallelogram.  Here 

diagonal distance while 

Similary, 

 

  

FRET efficiency for the configuration shown in the Figure 3.2 below is given 

 

   

and using equation (3.22)  

 

   

 

shaped tetramer geometry.  The various fitting parameters are displayed as 

distances between two protomers in a tetramer depending on the side chosen,  and  are the diagonal distances 

between opposite sides of a parallelogram configuration, lastly α is the angle between two sides of a parallelogram.  

These fitting parameters are used to change the location of the various peaks in a meta-histogram along the E

allowing for a theoretical model of the tetramer to be applied to experimental data. 

One configuration of a parallelogram-shaped tetramer model is represented by three 

donors and one acceptor as seen in Figure 3.2.  Then   and   represent the two sides of the 

α is the angle between two side of the parallelogram,  and 

elogram.  Here  represents the donors while  the acceptors. 

 is the long diagonal distance. 

39 

FRET efficiency for the configuration shown in the Figure 3.2 below is given 

 (3.25) 

 (3.26) 

.  The various fitting parameters are displayed as  and , or the 

are the diagonal distances 

is the angle between two sides of a parallelogram.  

histogram along the Eapp-axis 

shaped tetramer model is represented by three 

represent the two sides of the 

 are the two 

the acceptors.  is short 
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and plugging equations (3.26) and (3.27

and hence 

is the expression for apparent FRET effic

diagonals and pairwise FRET efficiency . 

six possible configurations can be derived and there expressions are tabulated in the table 

below. 

 

Table 3.1.Eapp peaks predicted by 

protomers 

 

Peak 

Number 

 

 

 

 

 

 

  

 

  

ons (3.26) and (3.27) in equation (3.25), we get 

 

  

 

  

is the expression for apparent FRET efficiency in terms of the sides of the parallelo

diagonals and pairwise FRET efficiency . Similarly the FRET efficencicy expressions for the other 

six possible configurations can be derived and there expressions are tabulated in the table 

Eapp peaks predicted by the parellogram tetramer model and their corresponding configuration of 

 

 

              

Configurations
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 (3.27) 

 (3.28) 

 

 (3.29) 

allelogram, the 

Similarly the FRET efficencicy expressions for the other 

six possible configurations can be derived and there expressions are tabulated in the table 

and their corresponding configuration of 

Configurations 
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Chapter 4 

RESULTS AND DISCUSSION 

4.1. Refining the Quaternary Structure of Ste2  

4.1.1. Determination of the smallest oligomer size 

To probe the oligomerization of the Ste2 receptors in living cells along the cellular surface, or 

plasma membrane, we employed an optical micro-spectroscopic (OptiMiS) technique described 

in Chapter 2 and FRET to quantify the interactions of the receptors as described in previous 

publications [33, 35, 47, 49].   To determine the FRET efficiencies, we first induced yeast cells to 

express only the Ste2-GFP2 (i.e. the energy donor) or only the Ste2-YFP (i.e. the energy 

acceptor).  By imaging cells we determined the elementary spectra of the donor and acceptor 

tags, which were subsequently used for un-mixing each image of cells co-expressing the two 

fluorescent species.  

Next, the cells that are co-expressing GFP2 and YFP at a one-to-one (1:1) ratio of each 

fluorescent tag on the Ste2 receptors (as quantified by the amount of DNA used) were imaged.   

Images were acquired using OptiMiS imaging system [46] and two dimensional maps of the 

donor fluorescence intensity in the presence of acceptors (kDA) and acceptor fluorescence 

intensity in the presence of donors (kAD) were obtained using spectral unmixing (see Chapter 2.5, 

2.6) [22].  Spatial distribution maps of apparent FRET efficiencies (Eapp) were computed based off 

of the kDA and the kAD values at each image pixel using mathematical equations derived 

previously [22]. Figure 1 shows typical results of the kDA and the kAD images of a representative 

cell co-expressing GFP2 and YFP and the resultant Eapp map as described in Chapter 2.6.3.  Also 

seen in Figure 1 is the Eapp histogram that was generated by binning the Eapp image pixels 
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according to their value (in this case, bin size 0.01) and plotting their number of pixels in each 

bin against Eapp.    

Figure 4.1. Typical FRET results of 

Spectral un-mixing of spectrally resolved fluorescence micrographs resulted in spatial distributions of donor emission 

in the presence of acceptors (A) and 

distribution map of apparent FRET efficiencies (

panels A and B as described in the methods section 

Eapp distribution by binning and plotting histograms the FRET efficiencies, in a bin interval of 0.02.  Scale bars used in 

all images, 5 μm. 

Previously, it has been reported that collecting posit

in Figure 4.1D, and plotting the number of peaks whose positions fall within a certain range of 

Eapp values against the Eapp value a 

meta-histogram allows for th

count of higher order oligomers [40

dimers, and higher-order oligomers leads to the combination of their signals which give a variety 

of peaks in the original histograms that are larger than the highest order structure present.  

Realizing that oligomers composed only of acceptors are not cons

negligibly exciting these in this experiment, is crucial to understandin

proportions of donors and acceptors at each pixel.  

To explain this mixing further, consider if six configurations corresponding to the 

rhombus-shaped tetramer and conta

 

  

according to their value (in this case, bin size 0.01) and plotting their number of pixels in each 

Typical FRET results of Saccharomyces cerevisiae expressing Ste2p fused to GFP2 and, separately, YFP.

mixing of spectrally resolved fluorescence micrographs resulted in spatial distributions of donor emission 

and acceptor emission in the presence of donors (B). A two-dimensional spatial 

distribution map of apparent FRET efficiencies (Eapp) was obtained from pixel-level calculations based on the data in 

panels A and B as described in the methods section (C). The two-D Eapp map shown in panel C was used to compute an 

distribution by binning and plotting histograms the FRET efficiencies, in a bin interval of 0.02.  Scale bars used in 

Previously, it has been reported that collecting positions of the dominant peaks as seen 

1D, and plotting the number of peaks whose positions fall within a certain range of 

value a meta-histogram of FRET efficiencies is obtained [33

histogram allows for the isolation of signal corresponding to dimers from a background 

nt of higher order oligomers [40].  The co-localization within a single pixel of monomers, 

order oligomers leads to the combination of their signals which give a variety 

of peaks in the original histograms that are larger than the highest order structure present.  

Realizing that oligomers composed only of acceptors are not considered, due to the laser 

bly exciting these in this experiment, is crucial to understanding the ability to mix various 

proportions of donors and acceptors at each pixel.   

To explain this mixing further, consider if six configurations corresponding to the 

tetramer and containing donors shown in Figure 4.1A are combined two at a 
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according to their value (in this case, bin size 0.01) and plotting their number of pixels in each 

 

and, separately, YFP.  

mixing of spectrally resolved fluorescence micrographs resulted in spatial distributions of donor emission 

dimensional spatial 

level calculations based on the data in 

map shown in panel C was used to compute an 

distribution by binning and plotting histograms the FRET efficiencies, in a bin interval of 0.02.  Scale bars used in 

ions of the dominant peaks as seen 

1D, and plotting the number of peaks whose positions fall within a certain range of 

RET efficiencies is obtained [33].  This 

e isolation of signal corresponding to dimers from a background 

localization within a single pixel of monomers, 

order oligomers leads to the combination of their signals which give a variety 

of peaks in the original histograms that are larger than the highest order structure present.  

idered, due to the laser 

g the ability to mix various 

To explain this mixing further, consider if six configurations corresponding to the 

are combined two at a 
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time, on average, at each image pixel, the number of new peaks is twenty, and it increases 

dramatically if more than three tetramers combine at each pixel. When large numbers of peaks 

combine, eventually a broad background in the met-histogram occurs, washing out any 

indication of the structures present, in combination with the numbers of cells imaged in this 

experiment (~1000 cells total) and the bin size of the typical histogram of 0.01 or 0.02. 

Next, to contrast this previous argument, consider that for dimers at relatively high 

expression levels, the number of peaks resulting from the combination of dimers at each pixel 

may still be small enough to allow individual peaks to be resolved within the meta-histogram.  

Figure 4.2B shows that if you combine two dimers, then only two peaks will form, however the 

second dimer, is composed only of non-FRET producing donors.  When averaging three, or four 

dimers per pixel, the number of peaks that occurs is simply three or four, or so forth.  This leads 

to the idea that large numbers of dimers per pixel still may be able to be resolved.  Due to the 

non-uniform distribution of the number of dimers per pixel (see Figure 4.2C), some peaks should 

be larger than others within the meta-histogram, but still much lower than that expected for 

tetramers. 

Lastly, a mixture of dimers and rhombus shaped tetramers at each pixel would yield 

broad meta-histograms with poorly resolved backgrounds.  This is due to the combination of 

tetramers, as well as the combination of tetramers and dimers, which are both described above.  

However, in the mixture of tetramers and dimers, the broad background has peaks that “shine” 

through due to the combinations of dimers.  When attempting to analyze the meta-histogram, 

theoretical Gaussian peaks are only used to simulate the peaks corresponding to the 

combination of dimers (as seen in figure 4.2C).  The broader background due to the tetramers is 

captured by the width of each of these Gaussians, and their overlap. 
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Figure 4.2. Donor-acceptor configurations and their respective peak positions for rhombus

dimers (b) at low expression levels, as well as for a mixture of DD and DA dimers at high expression levels (c).

Figure 4.2 depicts the first two models that apply to a

expression levels.  For higher expression levels, both the dimer and tetramer predict larger 

numbers of peaks compared to when only a single complex lies on

provides the expressions for single

For combinations thereof dimers, 

(composed of donor-acceptor, or donor

eight combinations of dimers (donor

donors per pixel, the number of predicted meta

surpassing the resolution of the experiment (i.e. the bin size of the histogram).

 

  

configurations and their respective peak positions for rhombus-shaped tetramers (a) and 

dimers (b) at low expression levels, as well as for a mixture of DD and DA dimers at high expression levels (c).

2 depicts the first two models that apply to a system of proteins at low 

expression levels.  For higher expression levels, both the dimer and tetramer predict larger 

numbers of peaks compared to when only a single complex lies on a single pixel.  The figure 

provides the expressions for single tetramers, as the schematic becomes too large to represent.  

dimers, in 4.2C, we can see that the combination of up to eight donors 

acceptor, or donor-donor dimers) residing at each pixel, can yield up to 

inations of dimers (donor-donor- and donor-acceptor dimers).  For larger numbers of 

donors per pixel, the number of predicted meta-histogram peaks increases, eventually 

surpassing the resolution of the experiment (i.e. the bin size of the histogram).
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shaped tetramers (a) and 

dimers (b) at low expression levels, as well as for a mixture of DD and DA dimers at high expression levels (c). 

system of proteins at low 

expression levels.  For higher expression levels, both the dimer and tetramer predict larger 

a single pixel.  The figure only 

large to represent.  

, we can see that the combination of up to eight donors 

donor dimers) residing at each pixel, can yield up to 

For larger numbers of 

histogram peaks increases, eventually 

surpassing the resolution of the experiment (i.e. the bin size of the histogram). 
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Figure 4.3. Meta-histograms of FRET efficiencies obtained from images of 

(B) of the α-factor pheromone.  The red line indicates

data, and the other individual lines represent the various peaks of theoretical 

in Chapter 3.2.1 and 3.2.2.   

 

For the Ste2 receptor in the presence and absence of the natural ligand, alpha

the meta-histograms are presented in Figure 

the model described above, composed of dimers and tetramers, the solid red line was obtained, 

which in both the presence and absence of the ligand capture the significant features of th

experimental data.  The fitting parameters that determines the position of all the peaks was the 
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FRET efficiencies obtained from images of cells in the absence (A) and in the presence 

eromone.  The red line indicates the theoretical fit, empty circles represent the experimental 

, and the other individual lines represent the various peaks of theoretical Gaussians defined by the dimer model 

For the Ste2 receptor in the presence and absence of the natural ligand, alpha

resented in Figure 4.3.  When attempting to theoretically fit these to 

the model described above, composed of dimers and tetramers, the solid red line was obtained, 

which in both the presence and absence of the ligand capture the significant features of th

experimental data.  The fitting parameters that determines the position of all the peaks was the 

value that corresponds to only donor-acceptor pairs (or dimers).  This values is called 

pairwise FRET efficiency, labeled by Ed, which is the same as the first column found in figure 2c.  

The average number of donors per pixel, which can take non-integer values, due to being an 

average from more than one cell comes from the inhomogeneity in expression across all cells.  

The widths and amplitudes of the theoretical Gaussian functions are not predicted by the 

theory, hence these values are not given or described herein.  As for the peak corresponding to 

-histogram is right-most, while all other peaks are laid out from right 

t in order of decreasing numbers of donor-acceptor pairs.  These peaks originate from the 

different proportions of the donor-donor and donor-acceptor pairs. 

The result of the meta-histogram analysis revealed that the monomeric donors did not 

have to be considered to fit the experimental data.  If there was an obvious presence of these 
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circles represent the experimental 

defined by the dimer model 

For the Ste2 receptor in the presence and absence of the natural ligand, alpha-factor, 

.  When attempting to theoretically fit these to 

the model described above, composed of dimers and tetramers, the solid red line was obtained, 

which in both the presence and absence of the ligand capture the significant features of the 

experimental data.  The fitting parameters that determines the position of all the peaks was the 

acceptor pairs (or dimers).  This values is called 

e first column found in figure 2c.  

integer values, due to being an 

average from more than one cell comes from the inhomogeneity in expression across all cells.  

functions are not predicted by the 

theory, hence these values are not given or described herein.  As for the peak corresponding to 

most, while all other peaks are laid out from right 

acceptor pairs.  These peaks originate from the 

histogram analysis revealed that the monomeric donors did not 

have to be considered to fit the experimental data.  If there was an obvious presence of these 
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monomers, the meta-histogram

available, Figure 2c would have one of the five donors in the first column to be only a 

monomeric donor, and the other five would have been donor

there would have been an additional peak that was seen which would 

meta-histogram.   

Figure 4.4. Eapp meta-histograms for three different expression levels of donors in the absence (A) and presence (B) of 

alpha factor ligand. The ranges of donor concentration per cell, in arbitrary units, are listed in the legends. Donor 

concentration was estimated in ter

formula: 

and 2.7[5]. 

 

4.1.2. Probing for higher order oligomers

Previous publications from our lab  suggested

present [5], therefore it can be stated that the dimers found within the meta

associate to form tetramers, and revert 

wanted to confirm that result.

donor fluorescence for each cell, when corrected for FRET.  This value is called F

was averaged over its area and categorized based upon it.  The categorization was to look a

three lowest ranges of FD (in arbitrary units).  These ranges were 0 to 999, 1000 to 1499, and 

1500 to 2000.  The lowest level of signal determined from spectral unmixing revealed that the 

we must consider counts above a few tens 

 

  

histogram would have yielded additional peaks.  If free d

available, Figure 2c would have one of the five donors in the first column to be only a 

monomeric donor, and the other five would have been donor-acceptor dimers.  In this case, 

there would have been an additional peak that was seen which would reside at 4/5E

histograms for three different expression levels of donors in the absence (A) and presence (B) of 

alpha factor ligand. The ranges of donor concentration per cell, in arbitrary units, are listed in the legends. Donor 

concentration was estimated in terms of the average donor fluorescence corrected for FRET (F
D
) according to the 

, which may be obtained readily from the theory presented in Chapter 2.6.3 

Probing for higher order oligomers 

publications from our lab  suggested that rhombus-shaped tetramers must be 

present [5], therefore it can be stated that the dimers found within the meta-histogram can also 

associate to form tetramers, and revert back to dimers, but not monomers.  We therefore 

wanted to confirm that result.  The next step in the analysis was to examine the average value of 

donor fluorescence for each cell, when corrected for FRET.  This value is called F

was averaged over its area and categorized based upon it.  The categorization was to look a

three lowest ranges of FD (in arbitrary units).  These ranges were 0 to 999, 1000 to 1499, and 

1500 to 2000.  The lowest level of signal determined from spectral unmixing revealed that the 

we must consider counts above a few tens of arbitrary intensity counts to account for noise 
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would have yielded additional peaks.  If free donors were 

available, Figure 2c would have one of the five donors in the first column to be only a 

acceptor dimers.  In this case, 

reside at 4/5Ed within the 

 

histograms for three different expression levels of donors in the absence (A) and presence (B) of 

alpha factor ligand. The ranges of donor concentration per cell, in arbitrary units, are listed in the legends. Donor 

) according to the 

from the theory presented in Chapter 2.6.3 

shaped tetramers must be 

histogram can also 

We therefore 

The next step in the analysis was to examine the average value of 

donor fluorescence for each cell, when corrected for FRET.  This value is called FD, and each cell 

was averaged over its area and categorized based upon it.  The categorization was to look at the 

three lowest ranges of FD (in arbitrary units).  These ranges were 0 to 999, 1000 to 1499, and 

1500 to 2000.  The lowest level of signal determined from spectral unmixing revealed that the 

to account for noise 
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levels, which varied for cell to cell.  Seen in Figure 3a and b, the decreasing expression levels of 

donors yields a disappearance of the peaks left of Ed.  If the dimers truly dissociate in the 

process, the peak corresponding to Ed should also have disappeared, which is not the case.  This 

shows a stable dimeric structure that is similar to other results found on the M3 muscarinic 

receptor [36], but it also indicates that the dimers are associated to form higher order 

oligomers, such as tetramers. 

The histograms gathered from both the non-ligated and ligated portions of the 

experiment yielded a variety of shapes.  However, most of the histograms contained a single 

obvious predominant peak.  These were the peaks measured and counted for the meta-

histograms displayed in figure 4.4A and B.  But a variety of histograms at every expression level 

still led to a variety of questions about higher order oligomerization.  Figure 4.5A and B shows a 

series of histograms at various expression levels and for non-ligated and ligated cells as well.  In 

both cases, there are broad histograms, and narrow histograms.  As the expression level was 

lowered, broader histograms were counted more often.  At the same time, it was noticed that 

some histograms had various peaks located beyond that of Ed as indicated by the red line in the 

graphs in Figure 4.5.  The red line represents the peak location of the last theoretical Gaussian 

curve or Ed for both the non-ligated and ligated cases, and was determined using the application 

of the dimer model on the meta-histogram.  Ed was measured to be located centered at 0.46 or 

46% for the non-ligated cells, and 0.44 or 44% for the ligated cells.  The top two cells in Figure 

4.5 for both non-ligated and ligated cases show broader histograms with actual measured peaks 

beyond Ed.   

 This lead to defining the criteria for determining if a histogram is broad or narrow.  A 

narrow peak must be single very obviously single peaked, and its location must fall below the Ed 

value.  These narrow peaks must be lower than 0.20 or 20% in width at full-width at half-
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maximum value of the measured predominant peak.  Then broad histograms must contain all 

the cells that are not within those guidelines, or histograms that sometimes contained more 

than one predominant peak, and wider than 0.20 or 20% along the Eapp scale.  However, it was 

seen within the broad histograms described above in Figure 4.4, that some were broad and had 

peaks located beyond Ed.  Hence, a subcategory of broad histograms had to be created.  The 

result was breaking broad histograms into those that showed peaks only measured below Ed and 

those that showed measured peaks beyond Ed.   
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Figure 4.5.Examples of histograms (out of a total of 39 cells untreated and 87 treated cells) presenting features at, 

below, or above Ed.   A)  Yeast cells not treated with alpha factor.  B)  Yeast cells treated with alpha factor.  For some 

of these histograms, it is clear tha

composed only of dimers will not capture these peaks beyond E

Figure 5 shows a variety of histograms for both non

expression levels that have real peaks beyond E

must be some other complexes than just dimers since the E

 

  

f histograms (out of a total of 39 cells untreated and 87 treated cells) presenting features at, 

.   A)  Yeast cells not treated with alpha factor.  B)  Yeast cells treated with alpha factor.  For some 

of these histograms, it is clear that Ed would need to be shifted higher to fit all of the peaks.  Note that a model 

composed only of dimers will not capture these peaks beyond Ed. 

Figure 5 shows a variety of histograms for both non-ligated and ligated cells at various 

have real peaks beyond Ed.  If there are peaks beyond Ed

must be some other complexes than just dimers since the Ed peak of the dimer model is the 
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furthest most peak for the dimer model.  Hence, to examine if there were some higher order 

oligomerization in these histograms, a tetramer model (described in the Materials in Methods 

section) was used to test if Ep could be set near the Ed value to see if the theoretical peaks of the 

model would line up closely with those measured peaks beyond Ed.  Also, having compared a 

variety of models such as a mixture of free monomers and dimers, a tetramer alone (rhombus, 

and parallelogram), and the mixture of parallelogram with dimers, the parallelogram with 

dimers model yielded the lowest residual fit between the theoretical model and experimental 

data.  Figure 4.6 uses the seven peak parallelogram model previously described in the Chapter 2, 

as well as the two ways a dimer can split, horizontally or vertically.  Only six of the theoretical 

peaks are used to do the fitting in the parallelogram model, because two of the peaks in this 

model tend to overlap almost identically.  Thus, eight theoretical Gaussian peaks are used to 

generate the model seen in Figure 4.6.  The result is an obvious higher oligomerization for the 

broad histograms at various expression levels that have peaks measured beyond Ed, as well as a 

common predominant peak at Ed.  This peak at Ed is amplified by the mixture of pairwise FRET 

efficiency of the tetramer, or Ep, and the Ed of the dimer.  The validity of using single tetramers 

and dimers per pixel as opposed to the dimer model which takes into account large numbers of 

molecules per pixel is in the fact that the histograms used in Figure 4.6 are of such low FD 

intensity, that using concentration calibration14, we can see that these are near the order of 

single molecule per pixel expression levels.  None of the histograms in Figure 6 are above 1200 

Fd only counts.  The calibration of GFP2 yielded 120 counts of photons per pixel using this system 

configuration.  Comparing the data, we can see that if you add the intensity given from a 

tetramer and dimer together, one can arrive at a number near the limiting value of these 

histograms in Figure 4.6.  Not only does the dimer fall exactly at Ed and Ep, but the tetramer 

peaks yielded the lowest residual fitting value and this tells us that there is obviously some 
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higher order oligomerization mixed with the dimer being the lowest order stable configuration.

However, at this stage it was defin

there was any effect due to the ligand.

Figure 4.6.Representative histograms of cells that fall within the lowest range of F

beyond the Ed value for both the absence 

 

4.1.3. Distribution of Apparent FRET Efficiencies

Since each cell represents a number of pixels on the camera, and each pixel is able to calculate 

Eapp values, a distribution of efficiencies of FRET for the

counting how many cells are at each level of efficiency within the distribution, we would 

establish what is called an “E

 

  

higher order oligomerization mixed with the dimer being the lowest order stable configuration.

However, at this stage it was definitively unclear what the higher order oligomer was, and if 

there was any effect due to the ligand. 

Representative histograms of cells that fall within the lowest range of F
D
only and have measured peaks 

beyond the Ed value for both the absence (A) and presence (B) of the alpha factor ligand. 

Distribution of Apparent FRET Efficiencies 

Since each cell represents a number of pixels on the camera, and each pixel is able to calculate 

values, a distribution of efficiencies of FRET for the selected cell can be established.  By 

counting how many cells are at each level of efficiency within the distribution, we would 

establish what is called an “Eapp histogram” by plotting the count of pixels at each efficiency 
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only and have measured peaks 

Since each cell represents a number of pixels on the camera, and each pixel is able to calculate 

selected cell can be established.  By 

counting how many cells are at each level of efficiency within the distribution, we would 

histogram” by plotting the count of pixels at each efficiency 
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between zero to one-hundred percent.  Since biology allows for vast variability, there is a variety 

of forms the histograms can take, namely narrow mostly single-peaked histograms to broad, 

many-peaked histograms.  Also, the number of pixels counted for these cells can vary depending 

on their expression of the two tagged fluorophores.  Cells showing lower intensities than the 

chosen 1.0% threshold of signal to noise were rejected for analysis, as these may provide false 

FRET readings if the signal was confused for background noise collected by the camera.  Once all 

of the histograms were filtered through this scrutiny, further analysis of the histograms was 

performed. 

 

4.2. Assessing the Effect of Ligand on Populations of Dimers and 

Tetramers 

4.2.1. Determination of Concentrations of Ste2 Receptors in Living Cells through 

Calibration via Fluorescent Protein Solution Measurements 

To estimate protein/receptor concentrations within living cells, protein solutions were 

developed and synthesized by Lucigen (Middleton, WI, U.S.A.) to mimic the identical proteins 

tagged to the Ste2 protein within the living yeast cells.  These protein solutions were given to us 

at 4.5 mg/mL for GFP2, and 3.5 mg/mL for YFP.  The stock molar concentration was found to be 

166.697 µM for GFP2 and 129.6532 µM for YFP.  Using these values, and the equation for 

desired concentration, nivi=nfvf, where ni is the initial molar concentration, vi is the required 

volume of the solution to make the desired concentration, nf is the desired concentration, and vf 

is the desired volume.  By subtracting vi from vf, the required amount of Phosphate Buffer 

Solution (PBS) could be calculated to create the desired concentration.  Both stock solutions 

were then reduced in to various concentrations for measurement at their excitation maxima.  

The estimated concentrations used for imaging both GFP2 and YFP were 2.5 µM, 5.0 µM, 10.0 
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µM, 20.0µM, and 40.0 µM.  A chambered slide was used to ensure a uniform layer of solution to 

be excited and measured.   

 Initial measurements found that the charge on the chambered slide would attract 

deposits of GFP2 and YFP and form clumps which would give irregular and inconsistent 

measurements. To counter this effect, pre-loading slides with Bovine Serum Albumin (BSA) 

would allow those excess charges to be neutralized and hence make a stable suspension of 

protein solution.  The protocol for coating a slide with BSA was to first make a 1% BSA solution 

in PBS.  Then 200 µL of BSA+PBS solution were added to 10 chambers of the chambered slide.  

The slide was then incubated at 37° C for one hour and then the solution was removed from the 

slide.  The slide was then filled with 200 µL of PBS to ensure viability of the deposited BSA for 

the experiment.  The slide was then covered and taken to the imaging facility and each chamber 

had the PBS removed before the protein solution was added for imaging.  BSA was found to 

have negligible auto-fluorescence, and a variety of control experiments were done to ensure 

negligible effects of measuring protein solutions spectra with pre-loaded slides.  Control 

experiments included: measuring PBS in a coated versus uncoated slide, measuring protein 

solutions in coated versus uncoated slides, measuring protein solutions in a mixture with BSA to 

create a solution of both on a coated and uncoated slide, and lastly, measuring auto-

fluorescence of a coated versus an uncoated slide alone.  

 After these control experiments were performed, the use of the coated slide was 

approved to do measurements on the various concentrations of protein solutions.  The solutions 

were made within a dark room with only yellow light that does not excite the proteins of 

interest.  Each desired concentration was measured using pipettes and both vortex spun and 

sonicated to ensure no association into larger clumps.  After proper mixing, 200 µL of the 

protein solution at a single concentration was added to the chambered slide coated with BSA.  
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The solution was imaged numerous times (8 images per concentration) in a variety of fields of 

view to ensure repeated results.  After these measurements were taken, the solution was 

removed from the slide without touching the BSA coating, and was saved in a 1.5 mL flask and 

covered with aluminum foil to avoid excitation and photobleaching.  After each concentration of 

GFP2 and YFP was measured, all the saved flasks were taken to be measured on a 

spectrophotometer (DU-800, Beckman Coulter, Brea, CA, U.S.A.) to measure absorption and 

using the Beer-Lambert Law, find the exact concentration of the solutions.  The 

spectrophotometer would scan from 800 nm to 200 nm and to check the DNA absorption the 

plotted graph of absorption versus wavelength would give the proper measurement at 280 nm.  

The Beer-Lambert Law states that 

a 	  c ε l, 
where a is the absorption, c is the concentration, ε is the extinction coefficient of the protein of 

interest, and l is the path length. Since the path length was standardized to 1 cm, the equation 

could be rewritten to solve for concentration.  Therefore, c = a/ε, and hence a near exact 

calculation of concentration could be made.  Since you are solving for c, and a is given, ε must be 

known as well.  ε was found by using the DNA gene sequence for either GFP2 or YFP given from 

Lucigen, and placing that sequence into ExPASyProtParam Tool yields various physical 

parameters, including the extinction coefficient.  ProtParam Tool gives two ranges of certainty in 

their calculations, and the higher of the two was always chosen.  Using these estimated values, 

the concentrations for each flask of an estimated concentration was calculated.   

 Afterwards, the raw data taken during imaging was then processed in ImageJ software 

and a region of interest was taken for each image (and was kept the same size and location 

throughout) to create a histogram of the number of counts per each of the 200 wavelengths.  

The lowest number of counts per each image was subtracted from each measurement taken at 
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each wavelength to remove background levels of noise.  Once subtracted, the values were 

summed and hence yielded either FD only for GFP2 or FA only for YFP according to eq. 2.18 and 

2.20.  The sums were taken from each image and averaged for each concentration.  The slope 

was measured by a trendline and used in the calculation of total concentration and molar 

concentration of proteins within living cells as found in Chapter 2.7.  The slope of GFP2 was 

found to be 1350.2 and the slope of YFP was found to be 1369.7, as seen in Figures 4.7 and 4.8. 

 

Figure 4.7.Slope of GFP2 protein solution at various concentrations and their corresponding arbitrary intensity counts.  

Each point on the graph corresponds to an average over eight separate measurements of the same sample. 
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Figure 4.8.Slope of YFP protein solution at various concentrations and their corresponding arbitrary intensity counts.  

Each point on the graph corresponds to an average over eight separate measurements of the same sample. 

 

4.2.2. FRET Efficiency vs. Concentration of Ste2 Receptors in the Presence and 

Absence of Ligand 

In the subsequent experiment involving two wavelength excitation and imaging of cells in the 

presence and absence of the α-factor ligand, the system settings were as follows: 

1. 800 nm @ 300 mW, Line dwell time of 35 ms, Spectral Resolution 1 

2. 960 nm @ 300 mW, Line dwell time of 35 ms, Spectral Resolution 1 

Both wavelength images had a 440x200 pixel size, and 200 wavelengths per pixel.  The sequence 

of imaging always went from 800 nm to 960 nm before the introduction of ligand, and then 800 

nm to 960 nm after the introduction of ligand.  Retaining similar laser power settings allowed for 

the analysis of two wavelength excitation described in Chapter 2.7.  The cells were placed on a 
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dish, ligand was introduced and then the same cells were imaged.  Onced finished, the cells and 

dish were discarded, and the process was repeated until the experiment was concluded. 

In both the presence and absence of the ligand, it is now known that both dimers and 

higher order oligomers are present.  To further explore if the ligand has an effect an association, 

we departed from the meta-histogram method to look at average Eapp plotted again molar 

concentration of the acceptor.  First, images were taken of the same cell before and after 

introduction of the ligand by immobilizing the cells with Concanavalin A.  Concanavalin A binds 

specifically yeast cell vacuoles and plasmalemma, and having been deposited on the imaging 

dish lead to cells being bound to the dish.  Having immobilized cells allowed for imaging before 

and after introduction of ligand at two wavelengths.  Both the donor excitation maxima (800nm) 

and the acceptor excitation maxima (960nm) were used in both cases, with equivalent laser 

powers (300mW).  After imaging, the cells were spectrally unmixed by only selecting a region of 

interest which indicated the cellular membrane where the Ste2 receptor is found in its 

functional form.  Similar to Figure 4.1, images containing information pertaining to the kDA and 

k
AD at both wavelengths, before and after ligand were obtained.  Using the same region of 

interest for each 800nm and 960nm, before and after introduction of ligand image to ensure 

averaging areas were unchanged.  The kDA and kAD information was then processed to gather the 

average concentrations of donors and acceptors present in each cell, which lead to determining 

the molar concentration of each.  Also calculated from this data was the average Eapp value for 

the cells.  This allowed for the plotting the average Eapp value of each cell in the experiment 

before and after introduction of the ligand as a function of its molar concentration of acceptors.  

The result was a plot that applies a linear trend line to all the cells in each category.  This plot 

displays an obvious slope difference between absence and presence of ligand.  The slope 

difference becomes obvious when looking at the overall percentage change between a control 
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experiment, where the same protocol was used on the cells for imaging and preparation, only to 

not administer the ligand.  This experiment shows that if you do not introduce the ligand, that 

the cells remain nearly identical when imaged twice.  A slope change of 1.32% from 0.3175 (the 

first image) to 0.3133 (the second image) was calculated, however the slope change was 

drastically different when the ligand was actually administered.  In the case of the absence of 

ligand, the slope was measured to be 0.33554, compared to the presence of ligand, which the 

slope measured was 0.4824, yielding a 43.77% change in slope. 

Once the cells were broken into sub-ranges of total concentration, there was an 

immediate difference at every level of expression but one, the 30 (29.999) - 40 µM range (due to 

only one cell staying within the same concentration range in the absence to the presence of 

ligand as described in Chapter 2.7).  Figure 4.9 depicts the various ranges of the sum total 

concentration of donors and acceptors, and the accompanying graphs of average Eapp versus the 

molar concentration of acceptors, or XA.  The result appears to be that the ligand has a stronger 

effect on average Eapp at higher sum of the total concentrations of donor and acceptors.  The 

slope increases more and more as the concentrations increase.  This may be the first time a 

measureable difference can be accounted for in the case of Ste2 in the absence and presence of 

the ligand. 
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This measured slope difference seen in Figure 4.9 may attributed to the ligand presence, 

but what it says about association is limited, in the absence of a detailed theoretical model.  An 

increase in average FRET efficiencies may mean that the dimers are associating into tetramers 

and hence yield a higher overall efficiency, but this conclusion has to be validated through 

further experimentation and detailed theoretical modelling.  We therefore conclude that these 

initial results show promise to indicate some effect of the ligand on the Ste2 protein, and it is 

likely that it is with regard to the association of the dimers into tetramers.  Future research will 

have to take these studies and maximize the statistics and hopefully a more apparent structural 

analysis can come about. 
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Chapter 5 

CONCLUSIONS AND FUTURE DIRECTIONS 

The conclusions drawn from this research can be stated as follows: the lowest order stable 

oligomer found in Ste2 is the dimer and it is found in large numbers, but Ste2 also forms higher 

order oligomers, such as tetramers.  The effect of the ligand is that there is a shift of proportions 

of dimers to tetramers after the introduction of the ligand.  This does not mean that both 

species are not present after ligand, as it was found that they were.  The experiment with 

averaging Eapp vs XA shows a larger shift at higher total (sum) concentrations of donors and 

acceptors.  If a linear slope on the Eapp vs. XA graph shows the presence of dimers, then large 

deviations in the Eapp axis must mean FRET efficiencies other than pairwise FRET efficiency, and if 

those deviations are vastly higher than the average, or linear slope, then that would also 

indicate the presence of tetramers because it is the only model to have peaks beyond Ep.  This 

also confirms the results previously found by the Raicu group concerning the Ste2 receptor [22].  

The meta-histogram shows promise to extract dimers if the dimers are present in the particular 

protein of interest.  The question still remains if monomers are present, because neither of 

these experiments eluded to any detail regarding them.  Monomers would add to the mixing of 

other oligomers and other peaks would begin to appear in the meta-histogram.  If those 

mixtures did not present a high enough population to create a predominant peak, then they 

were not captured in the meta-histogram.  So, only the mixtures of high enough population 

were fit, and it appears as though they were mostly dimers.  Lastly, the meta-histogram may be 

washed out or broadly mixed by the tetramers or higher order oligomers mixing, but analyzing 

individual histograms yielded the result of a higher order oligomers, or in this case the tetramer.  
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Future models may be able to capture more than one complex per pixel for higher order 

oligomers, and hence researchers can look at higher expressing cells. 

 Knowing the concentration of donors and acceptors allowed for the calculation of the 

slopes of the plots of average Eapp vs. XA.  The linear slope indicates that as the molar 

concentration of acceptors increases, so does the average Eapp, which approached pairwise FRET 

efficiency, or Ed.  This confirmed the findings from the meta-histogram that dimers are present.  

The spread beyond the trendline of the plots of average Eapp vs. XA also indicates there must be 

higher order oligomers present, because some cells exceeded the Ed value found in the meta-

histogram, as discussed in Chapter 4.1.2.  This agreement between the two separate 

experiments confirms that there are both oligomer sizes present within Ste2.  The use of 

averaging provided insight to the effect that ligand may be having, which is that the ligand may 

help form tetramers from dimers to cooperatively release the G-protein in Ste2.  The meta-

histogram lacked this information, but did find the lowest order oligomer present, which may be 

inherent in meta-histograms in general.  Meaning, that if dimers are present in a receptor, the 

meta-histogram will always emphasize them more compared to other oligomers due to the 

various combinations broadening it as discussed in Chapter 4.1.1. 

 Regarding future directions of the research, the consideration that the Ste2 used in 

these experiments lacked the ability to be internalized must be considered.  As other 

researchers have found [13, 17], Ste2 internalizes due to ligand binding, and also release of the 

G-protein is considered an effect due to ligand signaling.  What was not known was the effect of 

the ligand on the oligomeric size.  This thesis emphasizes that the ligand does have an effect on 

oligomeric size, but that functionality might not be effected.  To develop better insight, 

researchers would want to consider the use of cell trapping mechanisms, like microfluidic 

devices, that would allow for proper analysis of cells in the absence and presence of ligand.  One 
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question that arose during the analysis was if the same voxel, or z-axis section was captured 

identically before and after introduction of the ligand.  A microfluidic device would allow for a 

more accurate measurement in all dimensions since the cell is fully immobilized.  This is one of 

two avenues of future research that can be considered experimentally. 

 The next experimental avenue of future research might be to look at internalization of 

the Ste2 receptor.  As stated above, the Ste2 used in these experiments has been genetically 

modified to not internalize.  The use of the wild-type Ste2 would allow for the exploration into 

Ste2 internalization and G-protein release.  By using the above mentioned microfluidic device, 

and a fluorescently tagged ligand as well as a tagged G-protein, one could theoretically watch 

the entire sequence of the Ste2 internalization and G-protein release by using different species 

of fluorescent tags and properly spectrally umixing each.  This would be a true revelation in the 

field of GPCR signaling and the G-protein second messenger system.  Likewise, researchers could 

explore recycling of the Ste2 receptor, as well as looking into if the ligand breaches the cellular 

membrane without binding to Ste2.   

The final note to future researchers may be that the effect due to something called 

stochastic FRET is unknown at the present [50, 51].  The stochastic FRET is an undesired energy 

transfer due to physical interaction, but low amounts of physical interaction occur between 

these receptors in other cases [51]. It is known to exist, but not its extent, however thus far has 

been considered negligible at lower concentrations.  What is known is that the higher the 

expression level, the higher the stochastic FRET becomes, and hence higher FRET efficiencies.  

This may play a role in measuring quaternary structure of receptors using FRET and future 

research will be needed to extract this stochastic FRET and separate it from functional FRET. 
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